
Solution Outlines

SWERC Judges

SWERC 2009

SWERC Judges () Solution Outlines SWERC 2009 1 / 34

Statistics

Problem 1st team solving Time
A - Trick or Treat UPC-2 11
B - Restaurant Exceptional Prog From Lausanne 72
C - Lights
D - Darts UPC-2 68
E - Genetics
F - Haunted Graveyard ENS Ulm 1 142
G - Slalom Lusco Fusco 107
H - Routing
I - Happy Telephones ENS Ulm 4 17
J - Stammering Aliens UPC-2 98

SWERC Judges () Solution Outlines SWERC 2009 2 / 34

Statistics

Problem AC Total Success Rate
A - Trick or Treat 18 39 46%
B - Restaurant 25 85 29%
C - Lights 0 0
D - Darts 5 13 38%
E - Genetics 0 1 0%
F - Haunted Graveyard 8 146 5%
G - Slalom 6 35 17%
H - Routing 0 0
I - Happy Telephones 30 54 56%
J - Stammering Aliens 4 35 11%

SWERC Judges () Solution Outlines SWERC 2009 3 / 34

Working at the restaurant
Solution

Categories: ad-hoc, data structures.

Solution
Simulating a queue with two stacks.

We drop plates onto the same stack, and take them from the other
one.
When we run out of plates in the stack from where we take plates,
we move all plates from the other stack there.
Amortized analysis: pay 2 when you drop a plate (actual cost 1),
and pay 1 when you receive a take request (actual cost can be
much larger, but has already been paid for).
We output ≤ 2N lines and ≤ 3M movements; bounds in the
statement are not tight.

SWERC Judges () Solution Outlines SWERC 2009 4 / 34

Common mistakes

Misunderstanding about order:
I plates moved, dropped, and taken one by one
I take before move

Not meeting restrictions:
I Do not move, drop, or take 0 plates.
I Do not move more than 6M plates (M = sum of plates from waiter).
I Do not output more than 6N lines (N = events).

SWERC Judges () Solution Outlines SWERC 2009 5 / 34

Happy Telephones I
Solution

Category: straightforward.

SWERC Judges () Solution Outlines SWERC 2009 6 / 34

Solution
Because of the constraints (1 ≤ N < 10 000 and 1 ≤ M < 100), the
brute force approach is fine. Therefore a trivial check for all the calls for
each interval works. Complexity: O(MN).

A better solution
Sorting the vectors of ending and starting times of all telephone calls
and using binay search yields an O((M + N) log N) solution.

SWERC Judges () Solution Outlines SWERC 2009 7 / 34

Darts
Solution

Category: Dynamic Programming

20 1
18

4

13

6

10

15

2

17319

7

16

8

11

14

9

12
5

PUB

ROTEMO

di = 20,1,18,4, ... score of each sector.
pA(n,m) = probability of A win if it is A’s turn.
n = score of A
m = score of B
pB(n,m) = probability of B win if it is B’s turn.

Problem: compute pA(N,N) and pB(N,N).

SWERC Judges () Solution Outlines SWERC 2009 8 / 34

Darts
Solution

Remember: A plays in a unique way, but B plays maximizing his
probability of winning.

Recurrence

pA(n,m) =
1

20

20∑
i=1

(1− pB(n − di ,m))

pB(n,m) = max
1≤i≤20

1
3

1∑
j=−1

(1− pA(n,m − di+j))

Only valid if n >= 20 and m >= 20!!

SWERC Judges () Solution Outlines SWERC 2009 9 / 34

Darts
Solution

Trouble
Writing a similar recurrence for n < 20 and m < 20:
If n < 20, pA(n,m) depends on pB(n,m), and if m < 20, pB(n,m)
depends on pA(n,m).

Why are we in trouble? We have two equations and two variables,
pA(n,m) and pB(n,m), just solve the system!
Not so fast! B maximizes winning probability while playing
Where does B aim at? We have to solve the system for every possible
number B aims at, and then pB(n,m) will be the maximum of all the
possible outcomes.

Solve 20 of these systems and take the one maximizing pB(n,m).

SWERC Judges () Solution Outlines SWERC 2009 10 / 34

Darts
Solution

Solution
Precompute pA(n,m) and pB(n,m) for all n,m <= 501, solving system
of equations if necessary.
Complexity: O(maxN2).

Comments
Systems of equations can be solved approximately using iterative
methods (convergence is good in this case).
There is no need to solve 20 systems, 4 is enough.
Think about it!

SWERC Judges () Solution Outlines SWERC 2009 11 / 34

Genetics
Solution

Categories: Greedy, backtracking, randomized or math.

Idea
Try to reduce the size of the string at every step⇒ use surgeries 1, 2
and 3 whenever possible.
Use surgery 4 (cut and paste) until surgeries 1, 2 or 3 can be applied.
Several cuts may be needed!

Question
How to cut and paste properly to arrive to a reducible string?

SWERC Judges () Solution Outlines SWERC 2009 12 / 34

Genetics
Solution

First Solution - Special Cut and Paste
If a nucleotide (namely a/A) appears both times with the same face (a),
do the following cut and paste

a

a

S1

S2

S2 S1

a′ a′

and the result is reducible using surgery 2 (+1 arm)

SWERC Judges () Solution Outlines SWERC 2009 13 / 34

Genetics
Solution

First Solution - Special Cut and Paste (Continuation)
If two nucleotides (a/A and b/B) appear with different faces and
alternatively, as in the figure, do the following two cut and paste
operations

B b

a

A

S1

S2S3

S4

B′ b′

a

A

S′
1

S′
2 S′

B′ b′

a′

A′

and the result is reducible using surgery 3 (+1 leg)
Convince yourself that these two rules are always applicable. We are
finished! AC

SWERC Judges () Solution Outlines SWERC 2009 14 / 34

Genetics
Solution

Second Solution - Exhaustive search for a reducible string
Be careful, there are many possibilities for cut and paste⇒ many
reachable strings.
Normalization to reduce the number of strings is not enough.

It is not always possible to reach a reducible string with only one cut
and paste!

Even a BFS limited to two levels will give TLE .
DFS - Backtracking works much better and it is a possible solution
AC

SWERC Judges () Solution Outlines SWERC 2009 15 / 34

Genetics
Solution

Third Solution - Randomized cut and paste
Idea: since the empty string is reachable from all valid strings, and a
constant number of cuts suffice to reduce the string length n, taking
random cuts will reduce n in a polynomial expected number of steps.
AC
It works even better than DFS.

Mathematical approach - Classification of closed surfaces
The string codifies a closed surface and we are asking you for its
Euler characteristic and orientability.
Compute it using the well-known formula: χ = v − e + f . AC

SWERC Judges () Solution Outlines SWERC 2009 16 / 34

Slalom
Solution

Categories: Geometry + dynamic programming

Task
Compute the minimum-length path from the starting point to the finish
line.

First Reduction
The optimum path will be piecewise linear, composed of segments
between vertices (poles), and maybe one final perpendicular segment
And it will be contained in the polygon having all the poles as vertices.

SWERC Judges () Solution Outlines SWERC 2009 17 / 34

Slalom
Solution

Start

Finish line

SWERC Judges () Solution Outlines SWERC 2009 18 / 34

Slalom
Solution

Start

Finish line

SWERC Judges () Solution Outlines SWERC 2009 19 / 34

Slalom
Solution

Question to deal with
Computing visibility between vertices inside the polygon in O(n).

Take a vertex and compute visibility to the lower gates. Keep track of
the angles determining the sector of visibility.

SWERC Judges () Solution Outlines SWERC 2009 20 / 34

Slalom
Solution

Finish line
Be careful! You may finish with a segment perpendicular to the finish
line, so you may need to compute visibility from any vertex to the finish
line.

Got it!
It’s almost done. Run Dijkstra or simple DP (the graph is a DAG) to
compute the shortest path.

Complexity

Algorithm is O(n2) provided visibility is computed in O(n).
Try to think about an O(n) solution!

SWERC Judges () Solution Outlines SWERC 2009 21 / 34

Trick or Treat
Solution

Categories: Geometry + Binary Search

Problem: Given a set of points (xi , yi), 1 ≤ i ≤ n compute:

d = min
x

{
max

i

√
(x − xi)2 + y2

i

}
=

√
min

x

{
max

i
{(x − xi)2 + y2

i }
}

and the coordinate x minimizing d .

SWERC Judges () Solution Outlines SWERC 2009 22 / 34

Trick or Treat
Solution

First reduction
Minimum attained at a vertex of a parabola or at the intersection of two
of them.
Solution: Compute all of them in O(n2) and check which one is the
maximum. Total running time: O(n3). TLE

Second reduction
Each parabola has at most one intersection with another parabola, and
once it stops being the topmost parabola, it never is again.
Solution: Keep track of the topmost parabola and compute the next
intersection with the rest of the parabolas until we reach x =∞. Total
running time for the worst case: O(n2). Testcases designed for TLE.

SWERC Judges () Solution Outlines SWERC 2009 23 / 34

Trick or Treat
Solution

Heuristic
Try to reduce the set of points by taking only the convex hull of them.
Total running time: O(n log n + k2), where k is the number of points in
the convex hull. Worst case: O(n2). Again, testcases designed for
TLE.

SWERC Judges () Solution Outlines SWERC 2009 24 / 34

Trick or Treat
Solution

First solution
Binary search on the answer
We can compute for a given distance d , and for each parabola, the set
of points on y = 0 that are at a distance d or less from the parabola. If
empty, d is too small; if the intersection has more than one point, d is
too large.
The intersection of these intervals can be computed in O(n) time, thus
the total time is O(n log (xmax/ε)). AC

Second solution
Also a divide and conquer approach. Complexity O(n log n). AC.

SWERC Judges () Solution Outlines SWERC 2009 25 / 34

Third solution
Use ternary search to find x : the maximum of the parabolas is a
function which is first decreasing then increasing. Again, the total time
is O(n log (xmax/ε)). AC

Fourth solution
Clever search in the position x moving the solution point at each
step:

if the farthest point from x is on the right, do x = x + d
if it’s on the left, do x = x − d
else reduce the size of the steps, d = d/2.

Also O(n log (xmax/ε)): AC.

SWERC Judges () Solution Outlines SWERC 2009 26 / 34

Lights
Solution

Categories: math, dynamic programming.

Equivalent Task
Given v ∈ {0,1}n, how many sets of m distinct vectors in {0,1}n such
that v1 ⊕ v2 ⊕ . . .⊕ vm = v (addition is bitwise XOR).

Call the answer fm(v), let gm(v) = m!fm(v) (focus instead on
sequences, where order does matter).

SWERC Judges () Solution Outlines SWERC 2009 27 / 34

Lights
DP solution

Recurrence relation

Choose the first m − 1 distinct vectors; (m − 1)!
(2n

m−1

)
ways. vm is

now determined.
The only thing that can go wrong is v ⊕ v1 ⊕ . . .⊕ vm−1 is again
one of v1, . . . , vm, e.g. v1.
But this implies v2 ⊕ . . . vm−1 = v !

gm(v) = (m − 1)!
(2n

m−1

)
− (m − 1)(2n −m + 2)gm−2(v); nothing is

subtracted twice.
One-dimensional dynamic program (n is not a parameter!)
Base case only depends on whether v = 0 or not.
fm(v) = 1

m

(2n

m−1

)
− 1

m (2n −m + 2)fm−2(v).

Θ(m log p) solution, if binomial coefficients mod p are computed in
O(log p) time (e.g. precompute factorials and divide mod p).

SWERC Judges () Solution Outlines SWERC 2009 28 / 34

Lights
Closed-formula solution

Try to find a relationship between fm(0) and fm(v) for some v 6= 0.
Easy for odd m:

∑m
i=1 vi = 0 if and only if

∑m
i=1(vi + v) = v . So the

answer is
(2n

m

)
/2n, regardless of v .

For even m: let a = fm(0), b = fm(v). If we add v to vi , the sum is 0
and all v ’s are distinct iff for all j , vi + vj 6= v .
The only case when such i does not exist is when v1, . . . , vm can be
split into pairs of sum v . Therefore,

a− b = (−1)m/2
(

2n−1

m
2

)
a + (2n − 1)b =

(
2n

m

)
Solve for a and b!

SWERC Judges () Solution Outlines SWERC 2009 29 / 34

Haunted Graveyard I
Solution

Categories: graphs.

⇒

Single-Source Shortest Paths (edges may have negative weights).
Algorithm: Bellman-Ford O(VE) = O((W · H)2).
Pitfalls:

Negative cycles only matter if they are reachable.
Even reachable cycles that do not lead to the exit matter.
There are no edges leaving the exit cell.

SWERC Judges () Solution Outlines SWERC 2009 30 / 34

Stammering Aliens
Solution
Categories: binary search + hashing, suffix trees, suffix arrays.

Task
Given an string s, and an int m, find the size of the biggest substring
repeated m times (and rightmost position of such a substring)

First approach
Binary search in the size s of the substring.
For a given s, use hashing to count repeated substrings of size s.
If hash is good, all hashes for these n − s + 1 substrings will be
distinct with high probability.
Problem: Hashing takes O(n), this would be O(n2) TLE .
If we go through all substrings of length s in order, we can update
the hash in O(1)!
Complexity O(nlogn) AC.

SWERC Judges () Solution Outlines SWERC 2009 31 / 34

Stammering Aliens
Solution

Other approaches
Suffix tree: the answer is the deepest node having ≥ m children.
Naive O(n2) construction will TLE .
Build in O(n) with Ukkonen’s construction: AC.
Suffix array: the answer is the maximum, over i , of the longest
common prefix between suffix i and suffix i + m − 1 in the sorted
array.
Naive O(n2 log n) sort construction will TLE.
Use O(n log n) construction: AC .

SWERC Judges () Solution Outlines SWERC 2009 32 / 34

Routing
Solution
Category: divide and conquer, bicoloring

Exploit recursive definition of Benes network
If we knew how to select the state of the switches of the first and
last row, we could recurse on the left and right parts of the
newtwork.
Which computer will follow a path in the left subnetwork and which
in the right one?

SWERC Judges () Solution Outlines SWERC 2009 33 / 34

Routing
Solution

Computers that are inputs to the same switch in top row go into
different subnetworks (left and right) because of perfect shuffle.
Same for the bottom row.

Bicoloring
Build a graph: computers as vertices and edges between them if they
must go into different subnetworks. Always bipartite!
Run bicoloring to divide computers and select switches appropriately
(be careful with lexicographical smallest condition).
Complexity: linear in the size of the output AC .

SWERC Judges () Solution Outlines SWERC 2009 34 / 34

